

Clique: Better Than Worst-Case Decoding for Quantum Error Correction

Gokul Subramanian Ravi¹, Jonathan M. Baker¹, Arash Fayyazi², Sophia Fuhui Lin¹,

Ali Javadi-Abhari³, Massoud Pedram², Frederic T. Chong¹

1: UChicago, 2: USC, 3: IBM

Best of both worlds approach, combining two schools of QEC decoding, for 100x–10,000x gains!

Error correction for fault tolerant quantum systems

Error correction for fault tolerant quantum systems

Error correction for fault tolerant quantum systems

Scope: Cryogenic quantum systems

Scope: Cryogenic quantum systems

System-level view: Traditional outside-fridge QEC decoding Tbps I/O bandwidth \rightarrow bandwidth bottleneck!

[Fowler, PR-A '12]

..

[Das, HPCA '22]

System-level view: Cryogenic inside-fridge QEC decoding

Limited cryogenic power budget (~1W) cryo-resource bottleneck!

[Holmes, ISCA '20] [Byun, ISCA '22] [Ueno, HPCA '22]

E: Error Signatures

<u>Key Insight</u>: Not all errors hard to decode \rightarrow Separate common trivial errors from rare complex errors.

<u>Key Insight</u>: Not all errors hard to decode \rightarrow Separate common trivial errors from rare complex errors.

C: Complex-to-decode

T: Trivial-to-decode C: Complex-to-decode

T: Trivial-to-decode C: Complex-to-decode

Common trivial errors \rightarrow simple cryogenic 'Clique' decoder. Rare complex errors \rightarrow outside-fridge SOTA complex decoder.

System-level view: Better than worse-case decoding Reduced outside-fridge decoding → No bandwidth bottleneck!

Reduced outside-fridge decoding \rightarrow No bandwidth bottleneck! Reduced inside-fridge decoding HW \rightarrow No cryo-resource bottleneck!

1 logical qubit

1 logical qubit

Chained data errors trigger nonlocal syndromes which are challenging to pair and decode.

Minimum Weight Perfect Matching

Why are isolated errors trivial to decode?

Why are isolated errors trivial to decode?

Why are isolated errors trivial to decode?

How clique trivially decodes isolated errors

Isolated data errors only trigger locally paired syndromes which are easy to decode.

How clique trivially decodes isolated errors

Additional subtleties to <u>detecting</u> if all syndromes only correspond to isolated data errors!

Additional logic required to handle syndrome measurement errors!

Clique decoder architecture

CU: ~10 combinational gates. Clique decoder: d² CUs. Linear Clique scaling wrt. physical qubits.

Quantitative benefits: Fridge I/O bandwidth reduction

90 - 100% of decodes handled trivially by Clique, largely eliminating outside-fridge decoding.

Comparison to AFS compression [Das, HPCA '22]: Clique BW reduction is 10-10,000x greater than AFS which is an entirely off-chip decoding scheme but employs data compression on error I/O data.

Quantitative benefits: Cryo-resource requirement

Clique supports 2.5M physical qubits at 1W power \rightarrow 1000s of logical qubits.

2.5M physical qubits!

Comparison to NISQ+ [Holmes, ISCA '20]:

At d=9, Clique requires 25-80x lower on-chip resources compared to NISQ+, an approximate fully cryogenic decoder. Greater benefits at higher code distances.

Key Takeaways

- 1. QEC decoding suffers severe bottlenecks: bandwidth, area, power, thermal.
- 2. BTWC approach: common trivial errors can be handled separately from rare complex errors
- 3. Clique: A lightweight cryogenic decoder for accurately decoding and correcting common-case trivial errors.
- 4. High fridge I/O bandwidth reduction and low cryo-resource requirement (2-4 orders of magnitude benefits over SOTA).

Thank you! gravi@uchicago.edu

CCF-1730082/1730449, NSF Phy-1818914, NSF 2110860, DOE (Accelerated Research for Quantum Computing Program), NSF OMA-2016136, Q-NEXT DOE NQI Center, CIF (NSF 2030859), IBM/CQE Postdoc Fellowship, NSF (grants CCF-2119184, CNS-1956180, CNS-1952050, CCF-1823032, CNS-1764039), ARO (grant W911NF1920321), DOE Early Career Award (grant DESC0014195 0003), NSF Grant DGE-1842474.

Error chains generate less syndrome information.

Why are isolated errors much more common than error chains?

1 logical qubit encoded in 49 physical data qubits (d=7) PER= 10⁻³ (1 in 1000), N = 49

P (1 error in block) = N * PER = 4.9%

Why are isolated errors much more common than error chains?

1 logical qubit encoded in 49 physical data qubits (d=7) PER= 10⁻³ (1 in 1000), N = 49

P (2 <u>adjacent</u> errors anywhere in block) = 6 * N * PER² = 0.03% (160x less likely than the isolated case)

Clique decoder hardware design

Lightweight hardware suited to cryo-domain: < 10 combinational logic gates per clique unit. Total Clique decoder cost scales linearly in the number of qubits.

Clique decoder hardware design

How to trivially <u>detect</u> isolated errors?

<u>Isolated error litmus test:</u> If the center of a clique is set, and if an <u>odd</u> number of neighbor syndromes are set, the clique <u>can</u> be trivially decoded.

How QEC works: Surface code

Better logical qubits possible with higher code distance, but with increased overheads.

What are the quantitative benefits?

Logical error rate

How does QEC decoding work?

Likelihood of 1 data qubit error: P = 10⁻²

Likelihood of 2 errors: P² = 10⁻⁴

Likelihood of 7 errors: P⁷ = 10⁻¹⁴

The decoder returns a solution that is most likely: a decoding that produces the lowest number of data errors that satisfies the error syndrome pattern.

Background: Surface Codes 1 logical qubit w/ rotated surface code Data qubit D D D Z parity qubit Х Ζ Ζ d=3 X parity qubit D D Ζ Х Ζ D D D Error Syndromes X d=3

Support for high physical error rates

NISQ+ [Holmes2020]

Surface Codes... [Fowler2012]

Decoding is complex at large code distances

 1) Increases with code distance.
2) Multiplied by number of logical qubits.

(a) Matching graph

(c) Syndrome graph

Proposal: Better than worst case decoding for QEC

Results: Clique Decoder Coverage

10-1000x greater bandwidth reduction compared to AFS which is entirely off-chip decoding but employs data compression on the syndrome data that is be sent off chip

AFS: Accurate, Fast, and Scalable Error-Decoding for Fault Tolerant Quantum Computers

Results: Overheads compared to NISQ+

NISQ+: Boosting quantum computing power by approximating quantum error correction

Observation: Error distribution vs Error rates

Logical errors (both Clique and complex decoder)

Statistical Off-chip Bandwidth Allocation

1000 logical qubits

Errors need to be resolved every cycle*

Idle cycle insertion on stall cycle

Results: Clique Decoder Coverage – not all Os

Results: Bandwidth Allocation vs Stalling tradeoffs

