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Talk Outline

Background and Characterization of Resources

Building a Resource Manager

Other Work: Variational Quantum Algorithms
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Summary: Characterizing the Quantum Cloud

• Background: Machines are diverse and user demands are growing constantly: limited knowledge 
on best machine for any usecase + very long queuing times.

• Goal: Efficient management of cloud resources is critical à Understanding of job / machine 
characteristics is critical

• Study:  Two-year analysis of EPiQC jobs executed  on IBM machines academic: 20 machines, 6k 
jobs, 600k circuits, 10bil machine executions.

• Insights / Recommendations: Verification, Compilation, Machine Diversity, Resource 
Management, Queuing, Execution.

3Gokul Ravi, Kaitlin N. Smith, Pranav Gokhale, Frederic T. Chong. Quantum Computing in the Cloud: Analyzing job and machine characteristics. IISWC 2021. Nov 2021.



Background
Quantum computing 
Execution on the the quantum cloud
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Quantum Computing
• Quantum information’s ability to leverage superposition, interference, and entanglement gives significant 

advantages in cryptography, chemistry, optimization, and machine learning.

• Today’s Noisy Intermediate-Scale Quantum (NISQ) devices have nearly 100 qubits and suffer multiple forms 
of error. 

• Error rates are on the decrease (but significant) and devices with as many as 1000 qubits are on the horizon. 
The future of quantum computing is promising and demand is constantly growing.

• Quantum computing is still at a nascent stage and quantum computers are a rare and expensive resource 
and thus are primarily accessed world-wide via the cloud.

• Similar to classical HPC, efficient management of cloud resources is critical. Unlike classical HPC:
• Quantum machines are significantly impacted by machine fidelity constraints, 
• Quantum circuits are currently low complexity, meaning that their execution/fidelity trends are “predictable”.
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Submitting jobs to the quantum cloud
Ø Access to the quantum cloud (modeled on IBM).
Ø Users create a batch of circuits to execute as a job – all circuits in 

a batch are executed back to back.
Ø User selects a machine to execute on and compiles all circuits in 

the job for the target machine.
Ø Job is sent to the queue and user waits for execution and return.



Understanding quantum machines  
and jobs are critical to efficiently 
manage the cloud. 
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Machines
Size / Topology / Error
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IBM Quantum Cloud: Qubit (Size) diversity
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Ø Quantum machines are usually heterogeneous, coming in various sizes and configurations.
Ø Larger machines can execute larger applications but are limited by technology constraints

https://quantum-computing.ibm.com/



IBM Quantum Cloud: Topology Diversity
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Noise constraints restrict connectivity and impacts topology of different sized machines, and thus their capability.

https://quantum-computing.ibm.com/



IBM Quantum Cloud: RO Error diversity (Spatial)
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Ø Readout Error across IBM machines averaged 
over 2.5 months.

Ø Errors vary widely within machines as well as 
across machines.

Ø Worse-error qubits can be avoided on larger 
machines if low utilization.

Ø But average error rates are not necessarily well 
correlated with machine size.

Ø Readout errors can be corrected 
via measurement error mitigation but suffer 
from (re-)calibration vs accuracy trade-offs.



IBM Quantum Cloud: CX Error diversity (Spatial)
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Ø CX Error across IBM machines averaged over 
2.5 months.

Ø Machine connectivity constraints result in 
inserting SWAPs which lead to more CNOTs 
(and errors).

Ø Errors vary widely within machines as well as 
across machines.

Ø While worse-error qubits can be avoided in 
larger machines, avoiding qubits with good 
locality can lead to more SWAPs.

Ø Again, average error rates not well correlated 
with machine size.



IBM Quantum Cloud: CX Error diversity (Temporal)
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Ø CX Error on specific qubits on IBMQ 
Rome over 75 days / calibration cycles.

Ø Errors vary across calibration cycles 
meaning that both the optimal qubit 
set, as well as the application fidelity 
change over time.

Ø Error / qubit characteristics also 
drift within calibration cycles.



Thus, machine characteristics are 
challenging to comprehend and 
heavily influence the best machine 
for a usecase.
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Jobs on Machines
Queuing / Execution / Utilization / Fidelity

15



IBM Quantum Cloud: Queuing Times
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Ø Sorted queuing times from a two-year 
period.

Ø Green lines correspond to times of 1 
minute and 2 hours.

Ø Median queuing time is around 1 hour.
Ø Over 25% of the circuits are queued for 

2 hours or more.
Ø ~5% are queued for more than a day.



IBM Quantum Cloud: Per-machine trends
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Ø Average pending jobs across different 
weeks, machines sorted by size.

Ø Publicly accessible machines are 
highlighted in purple.

Ø Public / older machines are in higher 
demand.

Ø Jobs are not distributed equally across 
machines.

Ø Distributions are not stable over time.
Ø Exacerbated by reservations?



IBM Quantum Cloud: Machine Utilization
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Ø Fraction of machine qubits that were used by the 
circuit.

Ø Utilization is lower on larger machines due to 
connectivity and bisection bandwidth. 

Ø Large apps challenging to run due to connectivity 
constraints - increase depth / lower fidelity..

Ø Utilization non-uniform among same size 
machine. Choices made based on minimally 
understood heuristics. 

Ø Usage choices often influenced by queued jobs 
instead of utilization - bad for throughput and 
overall fidelity.



IBM Quantum Cloud:  Wait times => Errors
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Jobs compiled for one calibration cycle 
but executing in another

Noise-aware mapping over calibrations



Thus, load is imbalanced and queuing 
times are often very long, influenced 
by sub-optimal machine-application 
mappings.
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Takeaways
Comparisons / Recommendations / Diversity
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Contrasting against Classical Cloud

• Incorrect executions:  While verification and incorrect executions are common in classical computing, the 
challenge in quantum computing is that verification techniques are still at a very nascent stage.

• Compilation times: Quantum compilation is deeply tied to the characteristics of the hardware - error rates, 
topology and its calibrated state.  Compiled executables cannot be distributed independent of the machine.

• Fidelity: Choosing the right machine to maximize the fidelity is unique to quantum computing, and 
especially complex given the unique circuit interactions with the environment it executes in.

• Queuing times: While reducing queueing times is well researched in the classical domain, they are even 
more critical in the quantum domain because of the temporally changing characteristics.

• Execution times: Execution times in quantum are highly predicable compared classical computing. 
Overheads dominate quantum execution times. Higher predictability can allow for better scheduling policies.
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Insights / Recommendations
• Verification: As circuit complexity increases, so will the potential for mistakes and incorrect executions. Debugging and 

verification strategies are a must to maximize useful system utilization.

• Compilation: Compilation times are on the increase. Need to build more scalable compilation strategies, as well as 
potentially overlap some compilation tasks with the already long queuing times.

• Machine Diversity: Machine characteristics vary widely across machines and time. Heuristics for machine selection will be 
critical and require more study, especially with increasing application / machine complexity.

• Queuing Times: Load imbalance leads to widely varying queuing times reducing system throughput, and application 
fidelity. Predicting queuing times is critical especially with increased demand and competitive business models.

• Execution Times: NISQ-era execution times are likely to be highly predictable and mostly dependent on a few 
characteristics. Predicting execution time accurately amplifies the possibility of efficient scheduling.

• Resource Management: To maximize the overall system utilization/throughput and to improve application fidelity across 
users, machine-aware system wide management of resources should be explored.
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Multiple vendors: More diversity
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https://aws.amazon.com/braket/quantum-computers/



Talk Outline

Background and Characterization of Resources

Building a Resource Manager

Other Work: Variational Quantum Algorithms
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Summary: Managing jobs/resources in the quantum cloud

• Background: Machines are diverse and user demands are growing constantly: limited 
knowledge on best machine for any usecase + very long queuing times.

• Goal: An automated job scheduling and resource allocation approach which achieves 
optimal trade-offs between fidelity, wait times, QOS specifications etc.

• Proposal:
• Predicts fidelity trends across machines.
• Estimates run times and, thereby, wait times.
• Uses a utility function that is inherently able to prioritize fidelity improvements at low load, wait time 

reduction at high load and balanced otherwise.
• Optimizes for other constraints such as QOS, machine recalibration, etc.

• Result: Reduce wait times by over 3x and improve fidelity by over 40% on different usecases.

27
Gokul Ravi, Kaitlin Smith, Prakash Murali, Frederic T. Chong. Adaptive job and resource management for the growing quantum cloud. QCE 2021. Oct 2021.



Design
Resource Manager / Queuing time estimator / Fidelity correlator / Utility function
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Submitting jobs to the quantum cloud
Ø Access to the quantum cloud (modeled on IBM).
Ø Users create a batch of circuits to execute as a job – all circuits in 

a batch are executed back to back.
Ø User selects a machine to execute on and compiles all circuits in 

the job for the target machine.
Ø Job is sent to the queue and user waits for execution and return.
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Quantum Cloud Resource Manager

Ø Our proposal is to automate the job and 
machine management process.

Ø A job / resource manager selects the best 
machine for a job based on multiple 
constraints and QOS requirements.
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Manager in action

1. A job’s representative QC is compiled for all suitable machines.
2. Post-compilation features of the circuit for each machine are passed to the fidelity correlator.
3. Correlator provides a correlation between circuit features and expected fidelity on each machine.
4. Queuing information, job size and number of shots are used to predict wait times on each machine.
5. Other constraints like QOS requirements and calibration schedules are considered.
6. Machine is selected and any uncompiled circuits in the job are compiled to the selected target.
7. Job joins the machines queue and waits for execution.
8. Scheduler can provide inputs to optimally space out machine recalibrations.



Queuing Estimator: Job features to predict runtime
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Ø Correlation of job features vs actual runtimes: correlation is 0.95 or above on almost all machines.
Ø The major contributor is the batch size, i.e. the number of circuits in the job.
Ø A second contributor is the number of shots,  influential when the batch size is low.
Ø Other factors like depth, width and memory slots have limited influence



Predicted vs Actual Runtime
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Ø Actual vs Predicted runtimes for different jobs on IBMQ 
Manhattan.

Ø While machine and job characteristics can vary widely, 
application runtimes remain predictable.

Ø Runtime predictions can then be accumulated to obtain 
queuing times.



Fidelity trends across machines
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Ø Fidelity of 9 benchmarks on the 26 
simulated quantum machines.

Ø Machines are sorted by this average 
app fidelity.

Ø Fidelity trends exist -  Athens / 
Manhattan often perform better 
but are sometimes application 
dependent.

Ø Correlation isn’t purely related to the 
size of the machines - Athens and 
Santiago are 5q machines.

Ø Potential macroscopic trends within 
machine behavior but not simple 
enough to be naively captured.



Fidelity Correlator using circuit characteristics
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Ø Fidelity correlator uses four features of circuit 
compiled to a particular quantum machine.
Ø Circuit Depth,
Ø Avg. CX error over the circuit,
Ø Avg CX in the circuit critical path,
Ø Readout errors.

Ø Model is a product of linear terms: 
Fn=Π(ai+bi∗xi), where Fn is the fidelity, xi is the 
feature and ai, bi are the tuned coefficients.

Ø Model is tuned on a pre-collected training set.
Ø Figure shows correlation between actual 

application fidelity and the tuned model,  as well 
as with each feature.



Utility Function

Ø Maximizing the function should result in a job schedule that provides a good 
balance between fidelity and queuing time (at any load)

Ø The function should also account for QOS requirements and the impact of 
calibrations and stale compilations on the utility of the machine.

Ø Beyond the above (not pursued here), the utility function could account for user 
priorities, improved machine utilization etc.

Ø We use a balanced linear equation of the form Σ(ai∗xi). xi (features) are between 
0 and 1 and ai (coefficients) can be tuned empirically.
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Evaluation
Studies / Limitations 
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Optimizing for Fidelity / Wait Time (Low load)
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Low load Ideal: Choose highest fidelity machines, since the queuing times are not significant and thus best results are 
worth the short wait.



Incorporating QOS  (WT < 25)
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Fidelity and wait times for a QOS which tolerates wait times of up to "25". The strict bound means that Proposed 
approach sacrifices about 5% of maximum fidelity but still achieves 20% higher fidelity than the Only-WT approach.



Avoiding Calibration Crossovers
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Ø Machine-aware compilation on an old calibration cycle is not optimal for execution on a new calibration cycle.
Ø CC-aware approaches schedule near-calibration jobs on machines with low queuing time.
Ø At high load this is insufficient, and crossovers are alleviated through a staggered calibration approach.



Limitations / Future work

Ø Behaviors observed are a partial consequence of IBM and user policies.

ØDoes not optimize for user priorities, machine utilization, drift,  dynamic changes to system load 
etc.

Ø Compilation across multiple machines does not scale. Identify execution characteristics which 
can be estimated without compilation to shortlist machines.

Ø Improve fidelity correlation and execution time prediction models to achieve tighter bounds.

ØExplore staggered calibration policies based on observing queuing times, job arrival patterns etc.

Ø Current work uses a simulated loaded system. Real-world testing for practical use.
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Thank you!
gravi@uchicago.edu

Licensing: Super.tech / UChicago
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Backup
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Evaluation: Optimizing for Fidelity and Wait Time 
High load
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High load Ideal: Accept some loss in fidelity to achieve reasonable queuing times, though we would still want thefidelity 
to be substantial enough for realistic benefits.



Experimental Setup

Ø Compilation: IBM Qiskit, Noise aware compilation

Ø Cloud Simulation: 26 device models of IBM quantum machines + different load 
distributions of low, high and random queuing jobs / times across the machines.
Ø Low load: < 10% of maximum queuing on each machine,
Ø High load: 50-100%,
Ø Random Load: 1-100%

ØBenchmarks: Toffoli, Hidden Subgroup problem, Bernstein-Vazirani, Linear Solver, QAOA, 
VQE, Repetition Code Encoder, RC Adder.

ØMetrics: Probability of Success, Queuing Time

ØComparisons: a) Only Wait Times, b) Only Fidelity
45



Scope of the study
Ø Data: Our study has focused on data collected across IBM’s fleet of quantum computers, from over a two 

year period in an academic setting. 

Ø Queuing: The queuing data is generally applicable to all users of the IBM quantum systems over the studied 
period. Increasing demand for machines is not limited to IBM machines.

Ø Execution: The execution data is less closely tied to the specifics of the quantum circuits being run and is 
more tied to the size of the jobs - all of which again are applicable to all users of these systems.

Ø Fidelity: The general impact of calibration, noise characteristics, constraints of device connectivity etc on 
application fidelity, are not restricted in anyway to the specific circuits executed in this study.

Ø Device: Insights are useful to all superconducting devices which are are limited in connectivity, more noisy 
and require frequent recalibration  and generally extrapolate to other devices like Trapped-Ion.
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IBM Quantum Cloud: Overview
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Ø Sorted queuing times from a two-year period.
Ø Green lines correspond to times of 1 minute and 2 hours.



IBM Quantum Cloud: Compilation Times
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Ø Sorted queuing times from a two-year 
period.

Ø Green lines correspond to times of 1 
minute and 2 hours.

Ø Median queuing time is around 1 hour.
Ø Over 25% of the circuits are queued for 

2 hours or more.
Ø ~5% are queued for more than a day.



Why this study?

• Growing scarcity of quantum resources in the cloud, as the demand consistently 
increases. 

• Quantum machines in the cloud are limited and the number of users and “jobs” 
submitted to are drastically growing. 

• Contention trends will continue to worsen until the cost of building large and reliable 
quantum computers becomes more easily surmountable. 

• Similar to classical HPC, efficient management of cloud resources is critical. 

• Unlike classical HPC:
• Quantum machines are significantly impacted by machine fidelity constraints, 
• Quantum circuits are on the lower end of the complexity spectrum, meaning that their execution 

/fidelity trends are “predictable”.
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Details of our study

• 20 IBM Quantum Computers, over a two-year period up to April 2021  
in an academic research setting. 

• 6000 jobs run on these quantum machines, which encompass over 
600,000 quantum circuits. 

• Each circuit run for multiple trials on the quantum machines – data 
gathered over 10 billion machine executions. 
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Design: Utility Function

Ø Maximizing the function should result in a job schedule that provides a good balance between 
fidelity and queuing time (at any load)

Ø The function should also account for QOS requirements and the impact of calibrations and stale 
compilations on the utility of the machine.

Ø Beyond the above (not pursued here), the utility function could account for user priorities, 
improved machine utilization etc.

Ø We use a balanced linear equation of the form Σ(ai∗xi). xi (features) are between 0 and 1 and ai 
(coefficients) can be tuned empirically.
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IBM Quantum Cloud: Queuing to Execution Ratios
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Ø Sorted queuing times from a two-year 
period.

Ø Green lines correspond to times of 1 
minute and 2 hours.

Ø Median queuing time is around 1 hour.
Ø Over 25% of the circuits are queued for 

2 hours or more.
Ø ~5% are queued for more than a day.



Multiple vendors: More diversity
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IBM Quantum Cloud: Bisection Bandwidth
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Ø CX Error across IBM machines averaged over 
2.5 months.

Ø Machine connectivity constraints result in 
inserting SWAPs which lead to more CNOTs 
(and errors).

Ø Errors vary widely within machines as well as 
across machines.

Ø While worse-error qubits can be avoided in 
larger machines, avoiding qubits with good 
locality can lead to more SWAPs.

Ø Again, average error rates not well correlated 
with machine size.



Managing jobs/resources in the quantum cloud

• Background: Machines are diverse and user demands are growing constantly: limited 
knowledge on best machine for any usecase + very long queuing times.

• Goal: An automated job scheduling and resource allocation approach which achieves 
optimal trade-offs between fidelity, wait times, QOS specifications etc.

• Proposal:
• Predicts fidelity trends across machines.
• Estimates run times and, thereby, wait times.
• Uses a utility function is inherently able to prioritize fidelity improvements at low load, wait time 

reduction at high load and balanced otherwise.
• Optimizes for other constraints such as QOS, machine recalibration, etc.

• Result: Reduce wait times by over 3x and improve fidelity by over 40% on different usecases.
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Evaluation: Optimizing for Fidelity and Wait Time
Low load
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Low load Ideal: Choose highest fidelity machines, since the queuing times are not significant and thus best results are 
worth the short wait.



Evaluation: Avoiding Calibration Crossovers
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Ø Machine-aware compilation on an old calibration cycle is not optimal for execution on a new calibration cycle.
Ø CC-aware approaches schedule near-calibration jobs on machines with low queuing time.
Ø At high load this is insufficient, and crossovers are alleviated through a staggered calibration approach.



Evaluation: Optimizing for Fidelity and Wait Time 
High load
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High load Ideal: Accept some loss in fidelity to achieve reasonable queuing times, though we would still want thefidelity 
to be substantial enough for realistic benefits.



Experimental Setup

Ø Compilation: IBM Qiskit, Noise aware compilation

Ø Cloud Simulation: 26 device models of IBM quantum machines + different load 
distributions of low, high and random queuing jobs / times across the machines.
Ø Low load: < 10% of maximum queuing on each machine,
Ø High load: 50-100%,
Ø Random Load: 1-100%

ØBenchmarks: Toffoli, Hidden Subgroup problem, Bernstein-Vazirani, Linear Solver, QAOA, 
VQE, Repetition Code Encoder, RC Adder.

ØMetrics: Probability of Success, Queuing Time

ØComparisons: a) Only Wait Times, b) Only Fidelity
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Benchmarks
• Toffoli:A 3-input gate which performs logical AND be-tween two controls bits and writes onto the target bit.
• Hidden Subgroup Problem:Captures problems like factor-ing, discrete logarithm, graph isomorphism, and 

the shortestvector problem. It is implemented for 4 qubits.
• Bernstein-Vazirani:BV guarantees the return of the bitwiseproduct of some input with a hidden string [13]. 

BV isimplemented using 5 qubits.
• Linear Solver:Solver for a linear equation utilizing 3 qubits.
• Quantum Approximate Optimization Algorithm:QAOA [20]is implemented atop a parameterized circuit 

called an ansatzand we use one instance of a hardware efficient QAOA ansatzas the benchmark. We use 
QAOA ansatz for 4 qubits.

• Variational Quantum Eigensolver:The goal of this algo-rithm [30] is to variationally find the lowest 
eigenvalue of agiven problem matrix. We implement VQE on a hardware-efficient SU2 ansatz [6] and use 
one instance as the bench-mark. We construct the ansatz for 4 qubits (4 reps / fullentanglement) and 6 
qubits (3 / SCA).

• Quantum Repetition Code Encoder:A repetition code en-coder which introduces redundancy to the 
encoding that canbe exploited for error detection [32] (5 qubits).

• Ripple Carry Adder:We implemented a linear-depth, 2 bitripple-carry adder quantum circuit that uses 6 
qubits based onthe structure described in [15].
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